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Abstract—The Ritz variational method is suggested for use in the determination of the equivalent time
constant of diffusion processes. General formulas are obtained and illustrated with examples.

NOMENCLATURE

A, C, symmetric matrixes of elements a;;,
¢!

B OV, column matrixes of elements b;, 9,
i

D, coefficient of diffusion;

FLT, function;

Ty, input progress;

T, output progress;

Wis), Wis), polynomials;

a, R, linear dimensions;

1, time;

s, parameter of Laplace transform.

Greek symbols

o, coefficients;

Tgs Ts equivalent time constants;

T5 time constants;

@{P), coordinate functions;

VEG3N functions of variable ¢;

T3, space of functions which are

integrable with a square.

1. INTRODUCTION

THE DIFFUSION processes, such as thermal conduction,
osmosis in solutions, and the diffusion of an
electromagnetic field, are described by the equation
{6.8]

oT

AT = D—, 1

o (1
A solution of equation (1) under certain boundary
conditions is the sum of the elementary exponential
functions [6]

TPy =Y PO ep(—tr). @)

The estimation of the duration of an unsteady process
using equation (2) is very difficult. To avoid such
difficulties one can introduce an equivalent time
constant [5]

o(P) = r T(P,1)— TP, )

o T(P,0)—TI(P, 0) ®)

which is a characteristic parameter of the duration of an
unsteady process at a certain point P.

It is only possible to obtain the exact solution,
equation (2), of equation (1}in a few cases. The problem
is more complicated when the coefficient D in equation
(1) is not a constant, but a function D(P). A variational
method which allows one to determine an approximate
solution of equation (1) in an analytic form has been
suggested [2,3,7]. After using the Ritz variational
method for the boundary problem of equation (1}, a
general equation for the determination of the
equivalent time constant of diffusion processes can be
obtained. Some examples are presented.

2. GENERAL CASE

Let us consider equation (1) bounded by a smooth
curve I', area , with the boundary

T(P’ t)'PEF = TO(t) (4)
and the initial conditions
T(P,0) = T* = 0. {5

The calculation of the solution of equation (1) is
equivalent to the variational problem of the
determination of the minimum of the energy function

{371
arT ..
FLT> = j J [(VT)2 + 2DT—a-t-—] dQ = minimum.(6)
o

One can carry out a minimalisation of equation (6) by
means of the Ritzmethod {47, According to this method
the approximate solution is of the form

T(P,t) = Toy + 3, wid)odP) M
i=1 .

where the functions ¢ {P) vanish on the boundary I" and
form a complete, linearly independent set in Hilbert
space I?(€2). The functions i {t) can be determined from
the system of linear differential equations
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Applying the criterion of least square deviation.
f f [T(P,0)— T*}* dQ = minimum. (9
Q

one can show that

Y(0) = 0. (10)

The system of equations (8) arose from the condition of

the existence of the variational integral (6). The
elements of matrices A, B and C can be calculated from

a; = JV{p,V(pj dQ,
Ja
b; = JD(p,-dQ, (11
Ja
-
¢ = JD(p,-(p‘,- dQ.
Ja

Thus the boundary problem, equations (4) and (5), for
equation (1) has been resolved into a system of linear
differential equations.

3. EQUIVALENT TIME CONSTANT

Let T(P, s) be the image of the Laplace transform of
the function T(P, ). Then equation (3) is equivalent to

{5]
Iim[sT(P,s)]

P = 0= TP ) "

Transforming the system, equation (8), one can obtain

(A +sC)F(s) = —sTy(s)B (13)

from which it is easy to calculate the functions
Wis) .
Yis) = *STo(S)W('SS (14)

where W(s) and W{s) are appropriate determinants
obtained from Cramer formulas.

If 7, is the equivalent time constant for To(¢) then from
equations (7) and (12} one can finally derive the
equivalent time constant for the process T(P, 1)

(15)

where as it is easily seen that the quotients 3
= [W{(0)/W(0)] form the solution of the following
system of linear algebraic equations

A-©® =B (16)
Equations (15) and (16) allow one to determine the
equivalent time constant for T(P.,7) a simple and
convenient numerical method. The accuracy of the
calculation depends directly on the number of
functions @, taken.
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4. EXAMPLES OF APPLICATION

4.1. Equivalent time constant for an infinite sheer
The system under consideration is shown in Fig. 1.
Obtaining a solution of equation (1) for an arbitrary
function D = D{p), where p =
that simple system.
Representing the function D{p) as the sum of a power
series, one can approximate it by the polvnonial

Nod IS NOL edsy, even

"
Dip) =Y 2,p" 117

poi

It is assumed that the functions ¢, have the form

Pdp) = (1 p)p' (18

These functions fulfil all the conditions mentioned
above. Using equation (11) one can obtain

0
Lot ol dp 8(2if i -j—1)
ij = iP; = e T e
T . PicH alti+j*—1i+j—3)
for i +j odd, for i+jeven.,
) 0
! - Yux
b, =ua [ Dip)p; dp = Y e
Jo ST i p 1)

for i+ p even, " fori+ podd. {19}

Numerical calculations have been based on equations
(18),(19),(15)and (16). Figure 2 shows the distribution of
the function f = (r —1,)/a* for various forms of D{p). In
the particular case when D = const. one can obtain by
that means the equation, well-known in the literature

[5],
T = 154+0.5D(a" — x7}

4.2 Infinitely long cylinder

Assuming D(p) in the form of equation (17), and that
the ¢;s have the form
{20

pip)=(=pp' ' p =

TIT
ohggx

&
N

FIG. 1. Sheet of infinite dimensions in Cartesian coordinate
system.



The equivalent time constant of diffusion processes

D,f s m?]
4D,f 4D,f

0.5 0.5

0 x/a 0 x/a
-10 0 1.0 -1.0 o o
D,f L O, ¢
e - 1.0
D=1-p
10.f
’-\

x/a x/a

FIG. 2. Function f = (t—1¢)/a® vs x.
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FIG. 3. Function f = (1 —1,)/R? vs r for various types of function D(p).
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Dlpl=po

™~ L

Fi1G. 4. Function | = (1~

Consequently from equation (11), one can obtain

l
117 = =,
dyy 3
L dp = 2ij—i=-
I PO (A TR R TR e
fori+j>2
1 i "
b;=R* | Di(p)p;p dp = R? S )
L it ,,;)(p+i+1)(p+i+2)

(20

The results of the numerical calculation of the function
f = (z—1p)/a’ for various forms of D(p) are presented
in Fig. 3. The case where D = const. has been investi-
gated in ref. [5]. The equivalent time constant was
expressed there by means of a Bessel {function. The
results were the same as obtained here.

4.3. Ball

Takingfor aball of radius R, the functions ¢; and D(p)
in the same form as equations (20)and (17), respectively,
one can calculate the elements of the matrices A and B

R ! ’ot 2 d ZUR
i = oy T s
! o MC (i+j—D+Ni+j+1)
1 . .
b;=R>| Dip)pyp>dp=R>Y vl
L o™ dp ,,;n (p+i+2)(p+i+3)

(22)

2

J

4

o)/ R* vs r for various Lypes of function Dip).

Thefunction [ = (z—1,)/R*for various forms of D(p) is
plotted in Fig. 4. The results for D = const. do not differ
from these obtained in ref. [5] by means of Legendre
functions.

5. CONCLUSIONS

In this paper, the Ritz variational method has been
applied to determine the equivalent time constant of
diffusion processes. General formulas have been
obtained which allow one to calculate the duration of
an unsteady diffusion process in a simple and
convenient numerical method. The method has been
illustrated by cases which are generalisations of those in
ref. [5]. Taking appropriately large values of the
number n, one can perform the calculations with any
required accuracy
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METHODE VARIATIONNELLE DIRECTE POUR LA DETERMINATION DE LA
CONSTANTE DE TEMPS EQUIVALENTE DU PROCESSUS DE DIFFUSION

Résumé—La méthode variationnelle de Ritz est suggérée pour la détermination de la constante de temps
équivalente du processus de diffusion. Des formules générales ont été obtenues et elles sont illustrées par
quelques exemples.

EIN DIREKTES VARIATIONSVERFAHREN ZUR BESTIMMUNG DER MITTLEREN
ZEITKONSTANTE DER DIFFUSIONSPROZESSE

Zusammenfassung—In der vorliegenden Arbeit wurde ein direktes Variationsverfahren angegeben, welches
die Bestimmung der mittleren Zeitkonstante der Diffusionsprozesse gestattet. Es werden die allgemeine
Formeln vorausgesetzt und die Anwendungsbeispiele dargestellt.

HEHOCPEI[C’IBEHH!:W] BAPUALIMOHHBIA METO/] OINPEJEJEHUSA
3KBHUBAJIEHTHOH NMOCTOSSHHOW BPEMEHM NU®Y3UOHHBIX MPOLIECCOB

Aunoraums—B HacTasilem Tpyd¢ NpPEACTaBNCH HENOCPENCTBEHHBIH METON, KOTODbBIH pa3peluser
ONpeNie/iuTh 3KBHBAJECHTHYIO NOCTORHHYIO Bpemenu. BoiBeseHo obuime GOpMyan! ¥ npeacTaBieHo
MHMEPHI NIPHMEHEHHH.
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